Monday, July 2, 2012

Making a Table

The table is a list that contains an overview of a number of data information is usually in the form of words or numbers arranged in a line delimiter. On some sites, tables are widely used for specific purposes. In making the table there are several tags, among others: <table> ... </ table>, <tr> </ tr>, <td> </ td>. Before create a table  first you should  understand what is the use of these tags. I'll try to share a little knowledge about how to create tables. Perhaps in this tutorial is still a lot of mistakes, I apologize because ha was caused by my ignorance.

Look at the table below :
  • border : to give the outline of the table box;
  • cellspadding : to give distance between the table border to the content;
  • cellspacing : to give distance between the columns with each other.
  • width : to give the width of a table;
  • bgcolor : to give color of the table backround.
  • valign : to set the vertical align of the text
Table 1 :
    TagAtribut Deskripsi
    <table> ...........</table>border border="0" , "collapse" , solid #4F81BD
    cellpadding cellpadding="2"
    cellspacing cellspacing="0"
    width "100", "100", "400"
    bgcolor bgcolor="# CCFFFF"
    valign valign="top"
    Table  2 :
    TagDeskripsi
    <tr><!--</tr>To make a table row' <tr>beginning of the row and</tr> is the end of row
    <td><!--</td>To make table coloumn, <td>beginning of the coloumn and</td>is the end of coloumn
    Here's the code of the table 1 :
    <table bgcolor="#CCFFFF" border="0" cellpadding="2" cellspacing="0" style="border-collapse: collapse; border: solid #4F81BD 2px;"><tbody> <tr><td style="border: solid #4F81BD 2px; width: 60px;" valign="top">Tag</td><td style="border: solid #4F81BD 2px; width: 100px;" valign="top">Atribut</td> <td style="border: solid #4F81BD 2px; width: 400px;" valign="top">Deskripsi</td> </tr> <tr><td rowspan="6" style="border: solid #4F81BD 2px; width: 60px;" valign="top">&lt;table&gt; ...........&lt;/table&gt;</td><td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: solid #4F81BD 2px;" valign="top">border</td>   <td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: none;" valign="top">border="2" , "collapse" ,<span style="background-color: transparent;">&nbsp;</span><span style="background-color: transparent;">solid #4F81BD</span></td></tr> <tr> <td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: solid #4F81BD 2px;" valign="top">cellpadding</td>   <td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: none;" valign="top">cellpadding="2"</td></tr> <tr><td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: solid #4F81BD 2px;" valign="top">cellspacing</td>   <td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: none;" valign="top">cellspacing="3"</td></tr> <tr><td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: solid #4F81BD 2px;" valign="top">width</td>   <td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: none;" valign="top">"100", "100", "400"</td></tr> <tr><td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: solid #4F81BD 2px;" valign="top">bgcolor</td>   <td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: none;" valign="top">bgcolor="#D8D8D8"</td></tr> <tr><td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: solid #4F81BD 2px;" valign="top">valign</td>   <td style="border-bottom: solid #4F81BD 2px; border-left: solid #4F81BD 2px; border-right: solid #4F81BD 2px; border-top: none;" valign="top">valign="top"</td></tr> </tbody></table>
    There are several attributes that are not shown in the table above, please your own modifications to your table to be perfect. Good luck!

    Posted by: Denmas Tugino
    Godheg Updated at: Monday, July 02, 2012

    Saturday, June 30, 2012

    Area of Parallelogram

    Parallelogram is a plane shape that has two pairs of parallel sides and equal in length. Parallelogram has two pairs of angles that are not right-angled. Opposite corners of a parallelogram having the same large angle. Parallelogram with four equal sides is called a rhombus.

    The properties of a parallelogram is as follows:
    • Opposite sides are parallel and equal in length
    • Opposite angles are equal  
    • Adjacent angles  add up to 180°, so they are supplementary angles (Two Angles are Supplementary if they add up to 180 degrees).
    • Both diagonals bisect each line segment equal in length.
    AC and BD are diagonal of ABCD parallelogram.
    • AB equal length and parallel to the CD.
    • BC equal length and parallel to AD.
    • ∠ BAD = ∠ BCD, ∠ CBA = ∠ ADC
    • OA = OB = OC and OD
    Area of parallelogram can be found using triangle area by divide through BD or AC diagonals, so there are 2 congruent triangle. ΔBAD and ΔBCD.
    Area of parallelogram = 2 x Area of triangle
                                           = 2 x ½ (b x h)
                                           = b x h
    The Area is the base x height :
    Area = b × h
    Than from the area  of parallelogram can be found the base and heigh.
    b  = A/h and h = A/b


    Example :
    1.  Height of a parallelogram is 15 cm and base = 25. What is the area ?
         Area = b x h
                  = 15 x 25
                  = 375 cm
    2.  Area of parallelogram is 595 cm, height 17 cm. What is the base ?
         Base = Area/height
                  = 595/17
                  = 35 cm
    3.  Base of the parallelogram is 16 cm and volume = 192 cm. What is the height ?
          Height = Area/Base
                       = 192/16
                       = 12 cm

    Posted by: Denmas Tugino
    Godheg Updated at: Saturday, June 30, 2012

    Thursday, June 28, 2012

    Creating View Demo Button

    The use of this css is to create a button on a blog. With this css code will make it easier to modify the button, shapes, sizes and colors of the button. This button allows you to "view demo" or "download" and other purpose on your blog, You can customize your button with the right colors that adjusted with your theme background. With this button can change appearance of your blog.

    How to make the this button ? Please copy and paste the code below in your post page, do some color changes that proper with your blog theme.

    <style type="text/css">
    .button1 {
     color:#a8a8a8;
     font-family:arial;
     font-size:15px;
     font-weight:bold;
     padding:6px 30px;
     text-decoration:none;
     text-shadow:0px 1px 0px #000000;
      -webkit-border-radius:15px;
      -moz-border-radius:15px;
     border-radius:15px;
     border:1px solid #8a8a8a;
     display:inline-block;
     -webkit-box-shadow:inset 0px 1px 0px 0px #aba9ab;
     -moz-box-shadow:inset 0px 1px 0px 0px #aba9ab;
     box-shadow:inset 0px 1px 0px 0px #aba9ab;
     background:-webkit-gradient( linear, left top, left bottom, color-stop(0.05, #7a7a7a), color-stop(1, #000000) );
     background:-moz-linear-gradient( center top, #7a7a7a 5%, #000000 100% );
     filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#7a7a7a', endColorstr='#000000');
     background-color:#7a7a7a;
    }
    .button1:hover {
     background:-webkit-gradient( linear, left top, left bottom, color-stop(0.05, #000000), color-stop(1, #7a7a7a) );
     background:-moz-linear-gradient( center top, #000000 5%, #7a7a7a 100% );
     filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#000000', endColorstr='#7a7a7a');
     background-color:#000000;
    }
    .button1:active {
     position:relative;
     top:1px;
    }
    </style><a class="button1" href="your URL">View Demo</a>
    <style type="text/css"></style>
    Note :
    • Change the blue text with your color(text will be displayed),
    •  The red text with your URL.
    View Demo

    Download

    Posted by: Denmas Tugino
    Godheg Updated at: Thursday, June 28, 2012

    Wednesday, June 27, 2012

    Reading and Writing Roman Numbers

    There are various types of numbers, whole numbers ( whole Numbers are simply the numbers 0, 1, 2, 3, 4, 5, … (and so on)) , counting numbers (Counting Numbers are Whole Numbers, but without the zero.), integers (Integers are like whole numbers, but they also include negative numbers), or fractions. One more type of numbers we will study the Roman numbers. In general, the Roman numbers consist of 7 digits (denoted by the letter) as follows.

    • I represents the number 1
    • V represents the number 5
    • X represents the number 10
    • L represents the number 50
    • C represents the number 100
    • D represents the number 500
    • M represents the number 1000

    For other numbers, denoted by a combination (mixture) of the seventh symbol number.

    1. The sum rule of Roman Numbers
    To read the Roman numbers, can we describe in the form of summation as in the example below.


    Example:
    a. II  = I + I
            = 1 + 1
            = 2
        So, II be read 2
    b. VIII = V + I + I + I
                = 5 + 1 + 1 + 1
                = 8
         So, VIII be read 8
    c. LXXVI = L + X + X + V + I
                     = 50 + 10 + 10 + 5 + 1
                     = 76
         So, LXXVI be read 76
    d. CXXXVII = C + X + X + X + V + I + I
                         = 100 + 10 + 10 + 10 + 5 + 1 + 1
                          = 137
         So, read 137 CXXXVII
    Try to note the number of Roman symbol of the examples above. Getting to the right, the smaller value. There is no symbol that lined the base of more than three. From these examples we can write the first rules in reading Roman numbers following the symbol.

    • If the symbol of the smaller numbers ideally situated right, then the Roman symbols are summed. 
    • The addition at most three points.
    2. Reduction in Numbers of Roman rule
    What if the symbol of the smaller number is located on the left? To read the Roman numbers, can we describe in the form of a reduction as in the example below.
    Example:
    a. IV = V - I
             = 5-1
             = 4
        Thus, IV to read 4
    b. IX = X - I
              = 10-1
              = 9
        Thus, IX reads 9
    c. XL = L - X
              = 50-10
              = 40
        So, read XL 40
    From these examples we can write the second rule in reading Roman numbers following the symbol.
    • If the symbol of the smaller number is located on the left, then the Roman symbols are deductible.
    • Reduction of at most one point.
    3. Joint Rules
    The two rules above (addition and subtraction) can be combined so that it can more clearly in Roman numbers to read symbols. Let us consider the following example.
    Example:
    a. XIV = X + (V - I)
                = 10 + (5-1)
                = 10 + 4
                = 14
        So, XIV to read 14
    b. MCMXCIX = M + (M - C) + (C - X) + (X - I)
                            = 1000 + (1000-100) + (100 -10) + (10-1)
                            = 1,000 + 900 + 90 + 9
                             = 1999
        So, read MCMXCIX 1999


    Write Roman Numbers
    After reading the Roman numbers, of course you can also write down the number of Roman symbol of the natural numbers are specified. Write the rules of the Roman symbol of the same number you have learned before. Let us consider the following example.

    Example:
    1.. 24 = 20 + 4
              = (10 + 10) + (5-1)
              = XX + IV
              = XXIV
        Thus, the symbol of the Roman number 24 is the XXIV
    2. 48 = 40 + 8
             = (50 - 10) + (5 + 3)
             = XL + VIII
             = XLVIII
        Thus, the symbol of the Roman number 48 is XLVIII
    3. 139 = 100 + 30 + 9
               = 100 + (10 + 10 + 10) + (10 - 1)
               = C + + XXX IX
               = CXXXIX
        Thus, the symbol of the Roman number 139 is CXXXIX
    3. 1,496 = 1000 + 400 + 90 + 6
                  = 1000 + (500-100) + (100-10) + (5 + 1)
                  = M + CD + + XC VI
                  = MCDXCVI
        Thus, the symbol of the Roman number 1496 is MCDXCVI

    Posted by: Denmas Tugino
    Godheg Updated at: Wednesday, June 27, 2012