Saturday, June 30, 2012

Area of Parallelogram

Parallelogram is a plane shape that has two pairs of parallel sides and equal in length. Parallelogram has two pairs of angles that are not right-angled. Opposite corners of a parallelogram having the same large angle. Parallelogram with four equal sides is called a rhombus.

The properties of a parallelogram is as follows:
  • Opposite sides are parallel and equal in length
  • Opposite angles are equal  
  • Adjacent angles  add up to 180°, so they are supplementary angles (Two Angles are Supplementary if they add up to 180 degrees).
  • Both diagonals bisect each line segment equal in length.
AC and BD are diagonal of ABCD parallelogram.
  • AB equal length and parallel to the CD.
  • BC equal length and parallel to AD.
  • ∠ BAD = ∠ BCD, ∠ CBA = ∠ ADC
  • OA = OB = OC and OD
Area of parallelogram can be found using triangle area by divide through BD or AC diagonals, so there are 2 congruent triangle. ΔBAD and ΔBCD.
Area of parallelogram = 2 x Area of triangle
                                       = 2 x ½ (b x h)
                                       = b x h
The Area is the base x height :
Area = b × h
Than from the area  of parallelogram can be found the base and heigh.
b  = A/h and h = A/b


Example :
1.  Height of a parallelogram is 15 cm and base = 25. What is the area ?
     Area = b x h
              = 15 x 25
              = 375 cm
2.  Area of parallelogram is 595 cm, height 17 cm. What is the base ?
     Base = Area/height
              = 595/17
              = 35 cm
3.  Base of the parallelogram is 16 cm and volume = 192 cm. What is the height ?
      Height = Area/Base
                   = 192/16
                   = 12 cm

Posted by: Denmas Tugino
Godheg Updated at: Saturday, June 30, 2012

Thursday, June 28, 2012

Creating View Demo Button

The use of this css is to create a button on a blog. With this css code will make it easier to modify the button, shapes, sizes and colors of the button. This button allows you to "view demo" or "download" and other purpose on your blog, You can customize your button with the right colors that adjusted with your theme background. With this button can change appearance of your blog.

How to make the this button ? Please copy and paste the code below in your post page, do some color changes that proper with your blog theme.

<style type="text/css">
.button1 {
 color:#a8a8a8;
 font-family:arial;
 font-size:15px;
 font-weight:bold;
 padding:6px 30px;
 text-decoration:none;
 text-shadow:0px 1px 0px #000000;
  -webkit-border-radius:15px;
  -moz-border-radius:15px;
 border-radius:15px;
 border:1px solid #8a8a8a;
 display:inline-block;
 -webkit-box-shadow:inset 0px 1px 0px 0px #aba9ab;
 -moz-box-shadow:inset 0px 1px 0px 0px #aba9ab;
 box-shadow:inset 0px 1px 0px 0px #aba9ab;
 background:-webkit-gradient( linear, left top, left bottom, color-stop(0.05, #7a7a7a), color-stop(1, #000000) );
 background:-moz-linear-gradient( center top, #7a7a7a 5%, #000000 100% );
 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#7a7a7a', endColorstr='#000000');
 background-color:#7a7a7a;
}
.button1:hover {
 background:-webkit-gradient( linear, left top, left bottom, color-stop(0.05, #000000), color-stop(1, #7a7a7a) );
 background:-moz-linear-gradient( center top, #000000 5%, #7a7a7a 100% );
 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#000000', endColorstr='#7a7a7a');
 background-color:#000000;
}
.button1:active {
 position:relative;
 top:1px;
}
</style><a class="button1" href="your URL">View Demo</a>
<style type="text/css"></style>
Note :
  • Change the blue text with your color(text will be displayed),
  •  The red text with your URL.
View Demo

Download

Posted by: Denmas Tugino
Godheg Updated at: Thursday, June 28, 2012

Wednesday, June 27, 2012

Reading and Writing Roman Numbers

There are various types of numbers, whole numbers ( whole Numbers are simply the numbers 0, 1, 2, 3, 4, 5, … (and so on)) , counting numbers (Counting Numbers are Whole Numbers, but without the zero.), integers (Integers are like whole numbers, but they also include negative numbers), or fractions. One more type of numbers we will study the Roman numbers. In general, the Roman numbers consist of 7 digits (denoted by the letter) as follows.

  • I represents the number 1
  • V represents the number 5
  • X represents the number 10
  • L represents the number 50
  • C represents the number 100
  • D represents the number 500
  • M represents the number 1000

For other numbers, denoted by a combination (mixture) of the seventh symbol number.

1. The sum rule of Roman Numbers
To read the Roman numbers, can we describe in the form of summation as in the example below.


Example:
a. II  = I + I
        = 1 + 1
        = 2
    So, II be read 2
b. VIII = V + I + I + I
            = 5 + 1 + 1 + 1
            = 8
     So, VIII be read 8
c. LXXVI = L + X + X + V + I
                 = 50 + 10 + 10 + 5 + 1
                 = 76
     So, LXXVI be read 76
d. CXXXVII = C + X + X + X + V + I + I
                     = 100 + 10 + 10 + 10 + 5 + 1 + 1
                      = 137
     So, read 137 CXXXVII
Try to note the number of Roman symbol of the examples above. Getting to the right, the smaller value. There is no symbol that lined the base of more than three. From these examples we can write the first rules in reading Roman numbers following the symbol.

  • If the symbol of the smaller numbers ideally situated right, then the Roman symbols are summed. 
  • The addition at most three points.
2. Reduction in Numbers of Roman rule
What if the symbol of the smaller number is located on the left? To read the Roman numbers, can we describe in the form of a reduction as in the example below.
Example:
a. IV = V - I
         = 5-1
         = 4
    Thus, IV to read 4
b. IX = X - I
          = 10-1
          = 9
    Thus, IX reads 9
c. XL = L - X
          = 50-10
          = 40
    So, read XL 40
From these examples we can write the second rule in reading Roman numbers following the symbol.
  • If the symbol of the smaller number is located on the left, then the Roman symbols are deductible.
  • Reduction of at most one point.
3. Joint Rules
The two rules above (addition and subtraction) can be combined so that it can more clearly in Roman numbers to read symbols. Let us consider the following example.
Example:
a. XIV = X + (V - I)
            = 10 + (5-1)
            = 10 + 4
            = 14
    So, XIV to read 14
b. MCMXCIX = M + (M - C) + (C - X) + (X - I)
                        = 1000 + (1000-100) + (100 -10) + (10-1)
                        = 1,000 + 900 + 90 + 9
                         = 1999
    So, read MCMXCIX 1999


Write Roman Numbers
After reading the Roman numbers, of course you can also write down the number of Roman symbol of the natural numbers are specified. Write the rules of the Roman symbol of the same number you have learned before. Let us consider the following example.

Example:
1.. 24 = 20 + 4
          = (10 + 10) + (5-1)
          = XX + IV
          = XXIV
    Thus, the symbol of the Roman number 24 is the XXIV
2. 48 = 40 + 8
         = (50 - 10) + (5 + 3)
         = XL + VIII
         = XLVIII
    Thus, the symbol of the Roman number 48 is XLVIII
3. 139 = 100 + 30 + 9
           = 100 + (10 + 10 + 10) + (10 - 1)
           = C + + XXX IX
           = CXXXIX
    Thus, the symbol of the Roman number 139 is CXXXIX
3. 1,496 = 1000 + 400 + 90 + 6
              = 1000 + (500-100) + (100-10) + (5 + 1)
              = M + CD + + XC VI
              = MCDXCVI
    Thus, the symbol of the Roman number 1496 is MCDXCVI

Posted by: Denmas Tugino
Godheg Updated at: Wednesday, June 27, 2012

Sunday, June 24, 2012

How To Modify the Blockquote in Blogger Template

In HTML and XHTML, the blockquote element defines a block quotation within the text. The syntax is <blockquote><p blockquoted text goes here</p></blockquote>. The blockquote element is used to indicate the quotation of a large section of text from another source. Using the default HTML styling of most web browsers, it will indent the right and left margins both on the display and in printed form.


The non-semantic use of the blockquote element purely to indent text is deprecated by the W3C (World Wide Web Consortium) in the current (1999) HTML 4.01 Specification,[1] which is also the basis for XHTML 1.0. The preferred approach is the use of CSS (Cascading Style Sheets).

How to Modify how Blockquote ?
  • First step :
Go to your dashboard>>Template>>edit html>>proceed>>check expand template widget. Note : back up your template first. Use ctrl + f and find this code (or similar to this code) : blockquote or .post blockquote {........ . (In other templates might be a different code). Replace with the following code and make the necessary setting .
blockquote{background : url(https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEglYRlrip3H7yz_KRTnp_NS8XJl1AgNL-RyVu67Lro3aBExRKVzekH5ZtOELc7MMovELTEZxG8e8_JVVHgSDOiqaVE1y7ob766lHm5HCpDIuoEc3AGiuvV3xolQrh_bfu1KpCCOOjcYAFPT/s512/blockquote-orange.png); background-position:; background-repeat:repeat-y;  margin: 0 10px; padding: 0px 0px 0px 20px;font: italic 13px georgia;}
Look at the picture below

  • Second step :
Save your templates

Posted by: Denmas Tugino
Godheg Updated at: Sunday, June 24, 2012

Saturday, June 23, 2012

CSS Styling Links

In hypertext systems, such as the World Wide Web, a link is a reference to another document. Such links are sometimes called hot links because they take you to other document when you click on them.. Links can be styled with any CSS property (e.g. color, font-family, background, etc.). Special for links are that they can be styled differently depending on what state they are in. The four links states are:
  • a:link - a normal, unvisited link
  • a:visited - a link the user has visited
  • a:hover - a link when the user mouses over it
  • a:active - a link the moment it is clicked
CSS code :
<style type="text/css">
a:link {color:#FF0000;}    /* unvisited link */
a:visited {color:#00FF00;} /* visited link */
a:hover {color:#FF00FF;}   /* mouse over link */
a:active {color:#0000FF;}  /* selected link */
</style>
<b><a href="http://godheg.blogspot.com/" target="_blank">Godheg</a></b>
Result :

Godheg

Posted by: Denmas Tugino
Godheg Updated at: Saturday, June 23, 2012

How to remove Post Subscribe To Posts (Atom)

Tips and tricks this time is to remove posts Subscribe to posts (atom) which is in the latest version of the blogger template. posts subscribe to: post (atom) or subscribe to: post (atom) is located under the posts serves as a feed from our blog. The goal is that visitors can easily find your feed address. But if you already use a feed from Feedburner service. Then the presence of this writing is not so important anymore.


For those who prefer to not display this section, you may use the following ways:
  • Log in to Blogger. Click the Layout -> Edit HTML
  • Tick ​​the "Expand Widget Templates"
  • Then find the code below:
<div class='feed-links'> <data:feedLinksMsg/> <b:loop values='data:links' var='f'> <a class='feed-link' expr:href='data:f.url' expr:type='data:f.mimeType' target='_blank'> <data:f.name/> (<data:f.feedType/>)</a> </b:loop> </div>
  • If you have found, delete the code and then click Save Template
  • Please click on View Blog to see results
Look at the picture :


Good luck !!!

Posted by: Denmas Tugino
Godheg Updated at: Saturday, June 23, 2012

How to set the Unordered List In the Post with Pictures

Well on this occasion I will share about the blogger guide. I will discuss the guidelines Unordered List or change the display which is usually called bullets. Unordered list format is usually used in the post if short sentences outlining the points raised or down is not sorted sequentially and usually preceded by the symbol • (dot). Using Unordered List format also shows that good quality articles, orderly, and neat. It will also attract the visitors on your blog and read one article that uses the format Unordered List in the post. Unordered List view which I will share with you this has attractive mini display icon, bottom border for each sentence, also has a background color.

How to set the Unordered List In the Post with Pictures :
  • First step :
Go to your dashboard>>Template>>edit html>>proceed>>check expand template widget. Note : back up your template first. Use ctrl + f and find this code (or similar to this code),  .post-body ul , modified with this code :
.post-body ul,
.post-body ol{
  margin: 1em;
  padding-left: 1em;
}
.post-footer ul{
  margin: 1em;
  margin-top: -0.5em;
  padding-left: 1em;
}
.post-body ul li,

.post-footer ul li {list-style-image: url(https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh0z1LT-n__xtkjdF2Vgct37K3MeVppu2F1p9XWBI5Bc6ZJfBrOnjw-wY3jVqIMJKDirbdBUzobutK6qWbXN3v5kI17-Qu0oAbF6CMkJ6WQyPG8xpqv3w05Ly_rC703uSAzzjHe88m7R2g/s400/uncheck.gif);
  border-bottom: 1px solid #ccc;
  padding: .2em 0 .2em .5em;
}
.post-body ul li:hover,
.post-footer ul li:hover {cursor: pointer;
list-style-image:url(https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj0QIywsK7uLmgMP3Jnj9MI_GCkNpzfybZbxVMbYfhzb1pZfZEptcRSUH5t3_Blz9EnVEYdPDCQMW2tsgVQmtDw9L35PXBfB3zfdfc8K79f4hIsJZP0dGlNkYvb9ZrGHVDlFjhi1yNhaGA/s400/check.gif); background-color: #f2f2f2; color: #B1291F;
}
If your template not yet installed, please put the code under the code .post {................}
  • Second step
Save your template.

Posted by: Denmas Tugino
Godheg Updated at: Saturday, June 23, 2012

How To Hide Blog Title and Description

The purpose of this article is, for those of you who want to put banners in the header of your blog, make sure the blog title and description had been lost. Why? Because, at the time of banner attached. Title and description of the blog will still appear on the header.How To Hide Blog Title and Description. You can follow the following tutorial.


  • First step :
Go to your dashboard>>Template>>edit html>>proceed>>check expand template widget. Note : back up your template first. Use ctrl + f and find this code (or similar to this code) :
#header h1 {
font-family:'Segoe UI', Calibri, 'Myriad Pro', Myriad, 'Trebuchet MS', Helvetica, sans-serif;
font-size:26px;
font-size-adjust:none;
font-stretch:normal;
font-style:normal;
font-variant:normal;
font-weight:bold;
letter-spacing:-1px;
line-height:normal;
margin:5px 5px 0;
padding:15px 20px 3px 0;
text-transform:none;
}
#header .description {
color:#999999;
font-family:georgia;
font-size:12px;
font-size-adjust:none;
font-stretch:normal;
font-style:italic;
font-variant:normal;
font-weight:normal;
letter-spacing:0;
line-height:normal;
margin:0 5px 5px;
max-width:700px;
padding:0 20px 15px 0;
text-transform:none;
}
Add code display: none; at the end before closing the code }as below :


#header h1 {
font-family:'Segoe UI', Calibri, 'Myriad Pro', Myriad, 'Trebuchet MS', Helvetica, sans-serif;
font-size:26px;
font-size-adjust:none;
font-stretch:normal;
font-style:normal;
font-variant:normal;
font-weight:bold;
letter-spacing:-1px;
line-height:normal;
margin:5px 5px 0;
padding:15px 20px 3px 0;
text-transform:none;
display:none;
}
#header .description {
color:#999999;
font-family:georgia;
font-size:12px;
font-size-adjust:none;
font-stretch:normal;
font-style:italic;
font-variant:normal;
font-weight:normal;
letter-spacing:0;
line-height:normal;
margin:0 5px 5px;
max-width:700px;
padding:0 20px 15px 0;
text-transform:none;
display:none;
}
  • Second step:
Save your template and see the results.

Posted by: Denmas Tugino
Godheg Updated at: Saturday, June 23, 2012

Monday, June 18, 2012

Area of Trapezium/Trapezoid

A trapezoid is a 4-sided flat shape with straight sides that has a pair of opposite sides parallel.  Before looking trapezoid area, should know its parts. See the information below :

  • The bottom side (base b ) parallel to the top side (base a) .
  • The distance from one base to the other called height (h).

In the plane shapes are often written in capital letters at the vertex. This is to facilitate naming. For example, the trapezoid KLMN. KL means the line from  K point to L point, LM means the line from L point to M point, MN means the line from point M point to N point, KN means the line from K point to the N points.


Area of ​​trapezoid can be determined using the formula of triangle area. You do this by dividing the trapezoid
into two triangles. Then the triangle area summed.

Area of ​​trapezoid ABCD can be found by adding up the area of ​​triangle BAD with area of ​​triangle BCD

  • BAD = ½ x AB x AD
                   = ½ x 6 x 5
                   =  ½ x 30
                   = 15 area unit
  • BCD =  ½ x CD x BE
                   =  ½  x 9 x 5
                   =  ½  x 45
                   = 22,5 area unit
  • ABCD = 15 + 22, 5
                      = 37, 5 area unit


Surface area of ​​the trapezoid = Area of ​​triangle I (BAD) + Area of ​​triangle  II (BCD)
                                                    =  ½ x a x h + ½ x bx h
                                                    = ½ (a+b) x h 

From the trapezoid area formula can be find high and the length of the trapezoid base.

  • height = 2A/a + b
  • a  base = (2A/h) - b
  • b  base = (2A/h) - a

Example : 
1.  A trapezoid has 10 cm and 14 cm bases, height = 7 cm. What is the area ?
     Area = ½  x ( a + b) x h
               = ½ (10+14) x 7
               = ½ (24 ) x 7
               = 12 x 7
               =  84 cm
2.  A trapezoid has 8 cm and 12 cm bases, area = 90 cm. What is the height ?
      height = 2A/a + b
                  = 2(90)/8+12
                  = 180/20
                  = 9 cm
3.  A trapezoid has b base 16 cm, 14 cm height and area = 252 cm. What is the a base ?
     a  base = (2A/t) - b
                  = (2 x 252/14) - 16
                  = (504/14) - 16
                  = 36 - 16
                  = 20 cm
4. A trapezoid has a base 14 cm, 12 cm height and area = 180 cm. What is the b base ?
     b  base = (2A/t) - a
                  = (2 x 180/12) - 14
                  = (360/12) - 14
                  = 30 - 14
                  = 16 cm

Posted by: Denmas Tugino
Godheg Updated at: Monday, June 18, 2012

Sunday, June 17, 2012

Area of Kite

You have to learn the triangle and the area of ​​the triangle. Isosceles triangles have special properties. Two isosceles triangles are the same length of its base can be compiled into a wake kites. Kites are rectangular. The kite has two pairs of sides of equal length. Kite is formed of two isosceles triangles. Both triangles have the same base length, but different height.  

Area of ​​kite can also be found using the formula area of ​​the triangle. By calculating the area of ​​the isosceles triangles that make up the kite. After that, the results are summed. Area of ​​kite ABCD can be found by summing the area ΔADC with ΔABC.


  • Area  ΔADC =  ½ x  AC x OD
                                           = ½ x  8 x 4
                                           = 4 x 4
                                           = 16 area unit

  • Area  ΔABC =  ½ x  AC x OB
                                           =  ½ x 8 x 9
                                           = 4 x 9
                                           = 36 area unit
  • Area  ΔABC  = 16 + 36
                                = 52 area unit

Area ABCD = Area ΔADC + Area  ΔABC
                     = ½ x  AC x OD + ½ x  AC x OB
                            = ½ x AC ( OD + OB)
                            = ½ AC x BD 
                            = ½ x d1 x d2
 d1 and d2 is the diagonal of the kite. From the area of kite kite above, can be determined the diagonals.
  • d1  = 2A/d2
  • d2 = 2A/d1
Example :
1. A kite has d2 = 15 cm and area = 150 cm
     d1 = 2x150/15
           = 300/15
           = 20 cm
2.  A kite has d1 = 20 cm and area = 250 cm
      d2 = 2x 250/20
            = 500/20
            = 25 cm
3.  John want to make a kite. Two pieces of bamboo are made John with 48 cm and 44 cm 
      long.  If the kite has made, how area of the kite ?
      Area = ½ x d1 x d2
                 = ½ x 48 x 44
                 = 24 x 44
                 = 1.056 cm

4. On the wall there is a kite-shaped image. Area of the picture = 5.400 cm² and one of the 
    diagonal length is 120 cm. How long is the other diagonal ?
    d2 = 2A/d1
          = 2 x 5.400/120
          = 10.800/120
          = 90 cm

Posted by: Denmas Tugino
Godheg Updated at: Sunday, June 17, 2012

Friday, June 15, 2012

Area of Triangle

Triangle is polygon ( a plane shape that have three or more straight sides) with three angles and three sides( One of the lines that make a flat (2-dimensional) shape. Or one of the surfaces that make a solid (3-dimensional) object). There are three special names given to triangles that tell how many sides (or angles) are equal. There can be 3, 2 or no equal sides/angles:

Various kinds of triangles according to angle.
  • Acute triangle . The third large angle of less than 90 °.
  • Right triangle. One large angle of 90 °.
  • Obtuse triangle. Big one corner more than 90 ° and less than 180 °
Various kinds of triangles according to the side.
  • Scalene triangle, three sides of unequal length.
  • Isosceles triangle, two sides equal in length.
  • Equilateral triangle, three sides equal in length.
      Equilateral Triangle =   

      • Three equal sides 
      • Three equal angles, always 60°                                                                      

      Isosceles Triangle =

      • Two equal sides  
      • Two equal angles                       

      Scalene  Triangle =
      • No equal sides  
      • No equal angles                     
      The characteristics of the triangle
      • Triangles have three sides.
      • Vertex of the triangle there are 3
      • The whole  angles of triangle is 180 °.
        Area of triangle
        Area = ½ x b x h ( b=base, h=height)                                                                      
        Example :
        Base of triangle : 15 cm and height : 12 cm
        Area = ½ × b × h
                 = ½ × 15 × 12
                 = 90 cm

        Posted by: Denmas Tugino
        Godheg Updated at: Friday, June 15, 2012

        Area of Rhombus

        A rhombus is a four-sided shape where all sides have equal length. Also opposite sides are parallel and opposite angles are equal. Another interesting thing is that the diagonals (dashed lines in second figure) of a rhombus bisect each other at right angles. Rhombus formed from an isosceles triangle and its shadow reflected on the base as the axis of symmetry. Isosceles triangle ABC is reflected to the side of the base AC, so it appears his shadow ACD. ACD is congruent with the ABC. 


        The properties of a rhombus as follows :
        1. The length of its four sides equal in length 
             and Opposite sides are parallel.
        • AB = BC = CD = AD
        • AB // DC dan AD // BC
        2. Both rhombus diagonal bisect each other 
            the same length and intersect 
            perpendicularly.
        3. Opposite angles equal.
        • ∠BAD =  ∠BCD
        • ∠ABC =  ∠ADC
        • ∠BAE =  ∠DAE =  ∠BCE = ∠ DCE
        • ∠ADE =  ∠CDE =  ∠ABE =  ∠CBE
        4. Both diagonal are  axis of symmetry.
        • Diagonal AC ┘└ BD
        • Panjang AE = EC
        • Panjang DE = EB
        Area of Rhombus :
        Area =  ½ x d1 x d2
        Based on rhombus area can be found each diagonal.
        • d1  = 2A/d2
        • d2 = 2A/d1
        Example :
        1. A rhombus has diagonal 1 = 15 cm and diagonal 2 = 20 cm. What is the area ?
            Area = di x d2
                     = 15 x 20
                     = 300 cm
        2. A rhombus has 300 cm area and one of the diagonal is 30 cm. What is the other diagonal ?
             d1 = 2A/d2
                  = 2(300)/30
                  = 600/30
                  = 20 cm
        3.  A rhombus has 187 cm area and one of the diagonal is 17 cm. What is the other diagonal ?
             d2 = 2A/d1
                  = 2(187)/17
                  = 374/17
                  = 22 cm

        Posted by: Denmas Tugino
        Godheg Updated at: Friday, June 15, 2012

        Wednesday, June 13, 2012

        Area of Circle

        The circle is a plane shape that the distance of every point on its side with the center of the circle is always the same.. The radius of the circle is the distance of the center to the edge of the circle. The radius is denoted by r. The circle has a center line. The center line twice the length of the radius. The center line is denoted by diameter (d). d = 2 × r. The Circumference is the distance around the edge of the circle. Pi (the symbol is the Greek letter π) is: The ratio of the Circumference  to the Diameter of a Circle.
        • π = circumference/diameter = 3,1415926535897323846....
        • A quick and easy approximation to π is 22/7 = 3,1428571...
        A circle with a center point C has the following sections.
        • C is the center of the circle.
        • AC = CB = r = radius of the circle.
        • AB = diameter of the circle
        • AB = AC + CB = 2 × r = 2R = 2 × radius
        • If the radius of a circle = r and diameter d = 2 × r or r =  ½ × d
        Area of ​​a circle is  π  times the square of the radius of the circle Area =

        Circle Area = π r  
        When the area of ​​a circle is expressed by the diameter :
        Area = πr2  (note: r = ½  x d)
                  = π (½ d) 2
                 π ( ¼ d)
                  = ¼ π d

        Circle Area = ¼ π d
          
        Diameter = 2 x radius  
        Circumference =2πr or πd

        Example :
        1.  A circle has 21 cm radius. What is area and circumference ?
             Area = π r 
                       = 22/7 x 212
                       = 1.386 cm
            Circumference = 2πr
                                       = 2 x 22/7 x 21
                                       = 44 x 21
                                       = 132 cm
        2.  A circle has 616 cm area and π = 22/7. What is r  ?
             Area    =  π  x r2
             616     = 22/7 x r2
            22 x r2 = 616 x 7
            22r2     = 4312
                r2      = 4312/22
                r2     = 196
                r       =  196
                r       = 14 cm

        Posted by: Denmas Tugino
        Godheg Updated at: Wednesday, June 13, 2012